THERMAL AND PHOTOCHEMICAL DECOMPOSITIONS OF 1,4-BIS(AZIDOMETHYL)-1,4-DIPHENYLAZINEMETHYLENE¹)

Otohiko TSUGE,* Hideo SAMURA, and Masashi TASHIRO

Research Institute of Industrial Science, Kyushu University

Hakozaki, Higashi-ku, Fukuoka 812

Thermal decomposition of bisazide $\underline{1}$ in refluxing xylene afforded monoazide $\underline{6}$, which on heating in decaline under reflux converted into pyrazine $\underline{7}$. On the other hand, irradiation of $\underline{1}$ gave 1,2,4-triazine $\underline{8}$, which was obtained in excellent yield from photolysis of monoazide $\underline{6}$. The pathways for the formation of products are also suggested.

Hitherto numerous investigations have been reported on thermal and photochemical decompositions of azides of various types. Decomposition of a new bisazide, 1,4-disubstituted 1,4-bis(azidomethyl)azinemethylene ($\underline{1}$), might lead to the formation of dihydro-1,2,5,6-tetraazacyclooctatetraene $\underline{2}$ or 1,2,3-triazolo(3,2-b)-1,2,3-triazole $\underline{3}$, which would be a presursor of tetraazacyclooctateraene $\underline{4}$ or tetraazacyclooctatenee $\underline{5}$, $\underline{3}$,4) respectively. In this paper we wish to report on the preparation of bisazide $\underline{1}$ (R=Ph), and its thermal and photochemical decompositions.

$$\begin{array}{c}
C H_2 N_3 \\
R \\
N-N \\
R
\end{array}$$

$$\begin{array}{c}
R \\
N-N \\
R
\end{array}$$

The reaction of 1,4-bis(bromomethyl)-1,4-diphenylazinemethylene⁵⁾ with sodium

azide in refluxing methanol for 30 min afforded bisazide $\underline{1}$, 6) as orange yellow prisms in 93% yield. The structure of $\underline{1}$ was established on the basis of spectral data. IR(KBr) cm⁻¹: $\nu_{\text{N3(asym)}}$ 2190, 2160, 2120; $\nu_{\text{N3(sym)}}$ 1275. Bisazide $\underline{1}$ was fairly stable, and its mass spectrum showed a trace abundant parent ion (M⁺) at m/e 318, together with major fragment peaks at m/e 290 (M⁺- N₂), 262 (290⁺- N₂), 247, 234 (262⁺- N₂), 117 ([Ph \triangle NH][†]), 104 (PhC \equiv NH) and 103 ([PhCN][†]).

When bisazide $\underline{1}$ was heated in \underline{xylene} under reflux for 1 hr, monoazide $\underline{6}$, mp 133 -134°C, was obtained as pale yellow needles in 70.8% yield. Spectral data of $\underline{6}$ are as follows. IR(KBr) cm⁻¹: ν_{NH} 3300; $\nu_{N3(asym)}$ 2160; $\nu_{N3(sym)}$ 1300. NMR(CDCl₃) δ ppm: 3.80 (2H, d, J=3 Hz, CH₂), 7.2-7.7 (11H, m, aromatic protons (10H) and NH), 8.12 (1H, s, N=CH). Mass m/e: 290 (M⁺), 262 (M⁺- N₂), 234 (262⁺- N₂), 206 (234⁺- CH₂N), 178 ([PhC=CPh][†]), 130, 117, 104, 103. Although acetophenoneketazine and bisazide $\underline{1}$ were easily hydrolyzed with hydrochloric acid in acetic acid at room temperature, to give acetophenone and phenacylazide respectively, $\underline{6}$ was not hydrolyzed under same or more forcing conditions. This fact excludes an open chain CH=NH CH₂N₃ azine structure such as Ph-C=N-N=C-Ph from the possible structure for $\underline{6}$. On the basis of the above observations and of the results of decomposition of $\underline{6}$ as mentioned below, the structure of $\underline{6}$ was tentatively assigned as 1,6-dihydro-3,6-diphenyl-6-azidomethyl-1,2,5-triazine.

Thermolysis of monoazide $\underline{6}$ in refluxing $\underline{\text{decalin}}$ under an atmosphere of nitrogen for 1 hr afforded 2,5-diphenylpyrazine ($\underline{7}$), mp 196-197°C (lit.8) mp 196°C), as colorless leaflets in 12.5% yield, besides resinous materials. The structure of $\underline{7}$ was confirmed by its spectral data and by comparison with an authentic sample prepared from phenacyl bromide and ammonia.8) The IR spectrum showed no ν_{NH} ab-

sorption, and NMR spectrum(DMSO- d_6) exhibited signals at δ 7.5-7.7 (6H, m), 8.05-8.35 (4H, m) and 9.33 (2H, s).

On the other hand, when a solution of bisazide $\underline{1}$ in diethyl ether was irradiated with 400W high-pressure mercury lamp with a Pyrex filter at room temperature for 5 days, a product $\underline{8}$, mp 157-158°C, was obtained in 21.8% yield, together with large amounts of unreacted bisazide $\underline{1}$. The molecular formula of $\underline{8}$ agreed with that of a compound derived from monoazide $\underline{6}$ with the elimination of both nitrogen and methylenimine. Indeed, irradiation of a solution of monoazide $\underline{6}$ in diethyl ether with 100W high-pressure mercury lamp for 2 hr afforded $\underline{8}$ in 93.5% yield. Compound $\underline{8}$ was shown to be 3,6-diphenyl-1,2,4-triazine (lit. $\underline{10}$) mp 156-157°C) by spectral data. NMR(CDCl₃) δ ppm: 7.4-7.7 (6H, m), 8.0-8.3, 8.5-8.7 (each 2H, m), 9.03 (1H, s, N=CH). Mass m/e: 233 (M⁺), 206 (M⁺- HCN), 205 (M⁺- N₂), 178 (205⁺- HCN, 206⁺- N₂), 103. $\underline{11}$) Treatment of $\underline{8}$ with sodium borohydride in a methanol-diethyl ether mixture gave dihydrotriazine $\underline{9}$, mp 200-201°C (lit. $\underline{10}$) mp 195-198°C), in 83% yield. IR(KBr) cm⁻¹: $\nu_{\rm NH}$ 3300; $\nu_{\rm C=N}$ 1630. Mass m/e: 235 (M⁺), 158 (M⁺- Ph),

1

CH2-
$$\dot{N}$$
2

Ph

CH2- \dot{N} 3

 \dot{N} 2

 \dot{N} 2

 \dot{N} 2

 \dot{N} 2

 \dot{N} 4

 \dot{N} 5

 \dot{N} 7

 \dot{N}

Scheme 1

131 (158⁺- HCN), 104, 103. On heating of $\underline{9}$ in acetic anhydride under reflux, $\underline{9}$ converted into 8 quantitatively.

The fact that irradiation of monoazide $\underline{6}$ gave an excellent yield of triazine $\underline{8}$, suggests that photochemical decomposition of bisazide $\underline{1}$ proceeds $\underline{\text{via}}$ monoazide $\underline{6}$. Although exact pathways for thermal and photochemical decompositions of bisazide $\underline{1}$ are not clear, probable pathways for the formation of monoazide $\underline{6}$ from bisazide $\underline{1}$, and of pyrazine $\underline{7}$ and triazine $\underline{8}$ from monoazide $\underline{6}$ may be viewed as depicted in Scheme 1. Particularly, we viewed the photochemical decomposition of bisazide $\underline{1}$ as proceeding via nitrene intermediates as shown in paths ii and v.

Further investigation is in progress and the results will be published in the near future.

REFERENCES

- * To whom correspondence should be addressed.
- 1) Studies of Compounds Related to Azines. IX. Part VIII: O. Tsuge, M. Tashiro, K. Kamata, and K. Hokama, Org. Prep. Proced. Int., 3, 289 (1971).
- 2) R. A. Abramovitch and E. P. Kyba, "The Chemistry of the Azido Group," Ed. by S. Patai, Interscience Publishers, a divison of John Wiley & Sons, London-New York-Sydney-Toronto (1971), p 221.
- 3) R. Pfleger, E. Garthe, and K. Rauer, Chem. Ber., 96, 1827 (1963).
- 4) M. Brufani, W. Fedeli, G. Giacomello, and A. Nagiago, ibid., 96, 1840 (1963).
- 5) O. Tsuge, M. Tashiro, K. Kamata, and K. Hokama, Org. Prep. Proced. Int., <u>3</u>, 289 (1971).
- 6) All compounds in this paper gave satisfactory elemental analyses.
- 7) Bisazide $\underline{1}$ and monoazide $\underline{6}$ were decomposed with conc. sulfuric acid. The results will be reported in the near future.
- 8) F. Tutin, J. Chem. Soc., <u>97</u>, 2495 (1910).
- 9) Irradiation of a solution of $\underline{1}$ (5.0 g) in 250 ml of ether gave 0.8 g of $\underline{8}$, and 3.7 g of 1 was recovered.
- 10) C. M. Atkinson and H. D. Cossey, J. Chem. Soc., 1962, 1805.
- 11) Metastable peaks arising from fragmentations of M^+ HCN and M^+ N_2 were observed in the mass spectrum.

(Received September 7, 1972)